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Left or right handed potential data?

Horst Holstein1*, Des FitzGerald2, Matt Zengerer2 and Andy Starr1 highlight the nature of the 
ambiguity, and suggest a unified approach to encompass any mixture of coordinate conventions.

T he representation of potential vector and tensor fields 
by 3 × 1 and 3 × 3 matrices of Cartesian components 
is ambiguous unless the coordinate directions are also 
specified, and in particular, whether the system is 

left- or right handed. In this paper we highlight the nature of 
the ambiguity, and suggest a unified approach to encompass 
any mixture of coordinate conventions. Failure to observe the 
correct conventions can lead to incorrect interpretation of the 
potential data, and the suggested protocols are a step towards 
data integrity.

Tensors of rank one and of rank two, commonly referred 
to as vectors and tensors in geophysical contexts, are often 
recorded as data sets of 3 × 1 and 3 × 3 matrices of numerical 
Cartesian components. Surveys from different sources may, 
however, use different coordinate conventions, or the client 
may be unaware of the coordinate conventions assumed by the 
provider.

In essence, vector and tensor array data are incomplete 
without also being accompanied by information stating the 
directions and ordering of the axes of the employed coordinate 
system. A commonly used system makes the use of North (N), 
East (E) and Down (D) coordinate directions. But is the ordering 
of the vector components END or NED? The first is for a left-
handed and the second for a right-handed co-ordinate system. 
The choice will affect the meaning of the vector and tensor 
component data. Moreover, standard vector operation software 
(in particular, cross product routines) assume right-handed 
reference systems, and can yield incorrect results for left-handed 
systems unless explicitly adjusted.

To ensure consistent handling of potential data by various 
application programmes, we suggest an initial protocol during 
which the user is asked to declare the coordinate conventions 
to be used for a data source, before any processing of that data 
is undertaken (see Figure 1). This commits the user to a specific 
convention, rather than allowing processing to proceed under 
default assumptions. After this stage, any vector or tensor data 
from that source are converted into a standard right-handed 
system for internal working. An exit protocol reverts the internal 
form back to the conventions of an external data form. This will 
ensure a consistent treatment of vector and tensor processing. 
The user need not be aware of the internal convention, as all 
data interfaces are carried out via the user’s declared protocols.

In the sections below, we first give an intuitive derivation 
of standard results in vector and tensor transformations for 
the case of three common Cartesian coordinate conventions. 
This will allow us to demonstrate the forward and inverse 
transformations between the external and internal standard 
reference systems. We then extend our derivations to include 
the usual matrix-based transformation formulae, and show 
how they may be included in the protocols. In the discus-
sion and conclusions, we list some scenarios in which data 
coordinate protocols are important, and consider possible 
overheads from the suggested protocols.

Vector and tensor Cartesian representation
Given a potential function φ (x1, x2, x3) defined at points (x1, 
x2, x3) of a Cartesian coordinate system, the components of 
the associated vector field F and tensor field G can be written 
in matrix form as

 
(1)

Figure 1 Schematic diagram, for suggested integrity maintenance of vector and 
tensor handling. External vector and tensor data sources, on being accessed, 
are assigned appropriate methods for conversion into an internal form prior 
to processing. This ensures that data using different reference conventions are 
handled consistently. Results are exported through an output protocol by meth-
ods that convert the internal form to an appropriate external form.
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We next use the basis representation of vectors and tensors 
to explore the relationships between three commonly used 
coordinate systems.

Comparison of representations in the NED, END 
and ENU systems
Consider three commonly used co-ordinate systems, with 
basis directions enumerated as a) NED, b) END and c) ENU. 
Let the unit vectors along the axes of these three systems 
be denoted by N, E, D and U. Since vectors D and U are 
oppositely directed, we have D = −U.

Let the components of a vector F along unit vector direc-
tions N, E, D and U be denoted by

 (8)

Expressions for the same vector F in the three systems are 
given by

 (9)

 (10)

Equation (9) holds for both NED and END systems. In 
the absence of explicit basis cues, the standard notation 
indicates the implied basis vectors via ordering of entries in 
the component arrays, thus

 
(11)

When a survey with multiple source data conventions is to be 
processed, and vectors are represented as component arrays, 
there is clearly scope for error by assuming unstated basis 
ordering conventions. The forms (9) and (10), on the other 
hand, make the assignment of components to their basis 
vectors visible, and draw attention to the assumptions made.

Particular care must be exercised when employing the vec-
tor cross (×) product operation. The same numerical operands 
can lead to different numerical results, as illustrated by

 (12)

The meaning of the first product in the NED system 
is N  ×  E = D, and in the ENU system its meaning is 
E × N = U, while the meaning of the second product in the 
END system is E × N = −D, all of which are correct. The 
apparent discrepancy in the numerical result is a conse-
quence of the implicit ordering of the vector components.

where

 (2)
 

.

The usual condition of continuous second derivatives 
ensures that the tensor components φij defined in equation 
(2) form a symmetric matrix representation for G in equa-
tion (1).

Although the notation in equation (1) reflects common 
usage, it is imprecise, as it does not draw attention to the 
directions of the coordinate axes used. An array of compo-
nents can only represent a vector or tensor if the reference 
system’s basis vectors are also indicated or implied. Below, 
we give such indications via suffixed arrays.

Let x1, x2, x3 be three orthogonal unit vectors directed 
along the axes of the employed coordinate system. Compared 
to equation (1), a more explicit vector and tensor definition 
is provided via the notation

 , (3)

 . 
(4)

Equation (3) simply expresses the vector F as sum of unit 
vectors weighted by their vector components in equation (1), 
while equation (2) expresses the tensor G as a weighted sum of 
elementary tensors formed from the ordered pairs (xi xj). These 
ordered pairs are seen to be the component place holders in 
the matrix schema of equation (1). Such ‘dyads’ are discussed 
in Pujo (2003) and Weatherburn (1960).

In contrast to equation (1), equations (3) and (4) show 
the explicit dependence on the co-ordinate axis vectors 
(or basis vectors) x1, x2, x3. Their explicit presence allows 
any component in any reference system to be derived. 
For example, the components Fp, Gpq along arbitrary unit 
directions p and q, are given via equations (3) and (4) by

 (5)

 
 (6)
 

Orthonormality of the unit basis vectors, namely

 
(7)

leads to the expected component results in the home basis. 
For example, with p = x1, q = x2, equations (5) and(6) give 

 and  respectively.
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(15)

  
.

From these rearrangements, we obtain the equivalent implicit 
representations of the tensor G,

 (16)

Once again, it is evident that tensor operations (e.g., dif-
ferencing) will map to the corresponding matrix operations 
only if the matrix operands express tensors in the same 
reference system. In the next section we suggest a method of 
achieving such referential integrity.

Achieving a consistent internal representation
In order to achieve consistent vector and tensor processing, 
whatever the source data conventions, we propose to use 
an internally defined right-handed co-ordinate system into 
which all source data are mapped. The mapping is to occur 
during explicit initialisation, requiring the user to declare 
the co-ordinate system conventions of each external data 
source. Any result or display channel will invoke the inverse 
transformation, to convert the internal representation to 
that chosen by the user for the output channel. The user 
need not be aware of the specific internal representation 
– results are always displayed or output in a convention 
chosen by the user.

With this aim, let us define an internal right-handed 
reference system having unit vectors e1, e2, e3 with an internal 
column matrix representation

 (17)

Knowing that the e1, e2, e3 is a right-handed vector set, we 
can make the mapping

 (18)

External input vectors, expressed as coordinate triples in 
possibly mixed conventions such as

 
(19)

The NED and ENU systems are said to be ‘right-handed’, 
their hallmark being that the cross product of any two basis 
vectors in a left to right cyclic sequence yields the third. Thus, 
for the NED system we have N×E=D, E×D=N, D×N=E, and for 
the ENU system we have E × N = U, and its cyclic permutations. 
In the case of the END system we have: E×N = −D, N×D = −E, 
D×E = −N (see Figures 2 and 3). The systematic sign reversal 
is a property of left-handed systems. Standard vector routines 
assume a right-handed reference system. Equation (12) shows 
that the standard result must be adjusted when performing 
vector cross product operations in left-handed systems.

For a tensor G with components in the NED system, we 
write

 
(13)    .

We trivially rearrange the summed terms to reflect the order-
ings that would be used for the same tensor expressed in the 
END system,

 
(14)

and, with U = −D, in the ENU system,

Figure 2 Two reference systems with unit axis vectors shown. Following the 
right-hand rule for vector products as indicated by the curved arrow lines, the 
axis vectors satisfy a) X × Y =Z and b) X × Y =-Z. This makes system a) right 
handed and system b) left handed.

Figure 3 Two reference systems, employing the same set of unit axis vectors, 
but enumerated as a) N,E,D and b) E,N,D. Properties N × E = D, E × N = -D 
indicate that system a) is right handed and system b) is left handed. In both 
systems, the displacement vector αN + βE + γD denotes the same position vec-
tor v, but its components are recorded as [α, β, γ] and [β, α, γ] in systems a) 
and b) respectively.
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(28)

To recover an external description of the tensor from the 
internal representation, we take the bi-projections of the 
tensor on the appropriate component directions, as described 
in equation (6). Thus, to find component 13 of tensor G in 
the END system, we calculate E • G • D. The dot products 
themselves are executable as row times column matrix 
operations, and this leads to the matrix expression

 
(29)

where E, G, D are all expressed in the internal matrix form. 
The result is consistent with the END component matrix 
representation in equation (16).

The handling of NED, END and ENU data sources is 
a common practical requirement, but is rather special on 
account of axis reuse in these systems. Mappings between 
non-aligned data sources and the internal form follow read-
ily from the above, and is summarised in the next section.

Matrix formulae for vector and tensor 
component transformation
Vector and tensor data in arbitrary reference systems can be 
handled similarly to the treatment above, by transforming 
the basis vectors into a standard internal form. This leads to 
the standard component transformations by matrix methods.
Let an arbitrary external reference system have unit orthogo-
nal basis vectors x1, x2, x3. They are related to the internal 
reference vectors e1, e2, e3 via the vector identities

 (30)

The coefficients form a 3 × 3 matrix R, where

 
(31)

(see Figure 4). This matrix allows us to express the basis 
transformation (30) as

 (32)

The inverse relationship makes use of equations similar to 
(30) but with roles of symbols e and x reversed. This reversal 

will be redefined during the input protocol according to vector 
additions

 (20)

 (21)

 (22)

and under relations (17) and (18) lead to internal array 
representations (here suffixed by int)

 
(23)

These allow the usual vector operations to be correctly 
executed, for example

 (24)

To output the first result in the NED convention, for example, 
we compute

 (25)

The result for a • (b × c),  being scalar, is a coordinate system 
invariant. Conversion of tensors to and from internal form is 
similarly carried out, by appealing to external basis vectors 
expressed in the internal matrix representation. Moreover, 
elementary tensors eiej have a component matrix represented 
directly as the matrix product eiej

T. The tensor G, formed 
originally from the NED components in equation (13), has 
an internal representation for which the component matrix is

 
(26)

Terms eiej
T are matrices with a single unit element in position 

ij, for example

 
(27)

Direct evaluation of the matrix expression (26) then leads to 
the internal representation
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reduce this count to 14 inner products. If the external system 
is right-handed and maps directly into the internal system, no 
arithmetic operations are involved. A left-handed system may 
require only one sign flip for vectors and two for symmetric 
tensors (compare the END and ENU systems in equation 
(16)) for external to internal conversion. This shows that 
the conversion methods may allow tuning to lower the 
computational complexity burden.

The formalism in equations (9), (10) and (13)-(15), that 
expresses the external-internal conversion of vectors and ten-
sors as sums over basis vector expressions (e.g., via equations 
(16) and (17), may be highly non-optimal, particularly if 
patterns of zeros and ones in the internal basis representa-
tions are disregarded. When applied to high volumes of data, 
the methods should be considered for optimization. In some 
cases, a few component transpositions and sign flips may 
suffice to produce the internal forms. In general, though, the 
conversion overhead grows only linearly with data size. The 
advantage of the theoretical formalism is that it is highly 
intuitive and open to verification.

Consider, for example, expressing the magnetic field as 
a vector H when it is observed with total intensity H nT at 
declination δ and inclination ι degrees (see Blakely, 1995). In 
terms of the local NED reference frame, the magnetic field 
vector H can be written as

 (37)

To manipulate such data over a range of latitude and 
longitude locations in a common reference frame, an 
Earth-centred system may be desirable. Employing internal 
right-handed unit basis vectors e1, e2, e3, directed from the 
Earth’s centre to (latitude, longitude) surface points at (0,0), 
(0,90), (90,-) degrees respectively, we may express the local 
basis vectors as functions of longitude φ and latitude λ by

 (38)

leads to the transpose of matrix R. The inverse relation is 
therefore

 (33)

Applying this change of basis to equation (3), we obtain the 
vector transformation formula

 
(34)

The transformation of tensor components in equation (4) is 
achieved in a similar way. We first reorganise the equation (4) 
into bi-quadratic form over the basis vector objects

 
(35)

Substituting from equation (33) for the pre-multiplying row 
expression, and its transpose for the post-multiplying column 
expression, we obtain the tensor transformation formula

 (36)

Equation (34) expresses the same vector F under different 
basis representations, and equations (35), (36) similarly 
express the same tensor G. The grouping of matrix operations 
in round brackets therefore represents the matrix operations 
to be carried out on the component arrays when there is a 
change of basis.

Arithmetic complexity issues
Our process model treats vectors and tensors as objects 
of an abstract class, with an internal representation used 
for calculation, but whose internal details are not of direct 
concern to the user. The class methods allow conversion 
from any user-defined reference system to the internal form, 
and vice versa. Usually the external view of a vector is an 
array of three numbers for the component values, together 
with information to identify the external reference system. 
For tensors, the array contains 9 numbers, but symmetry 
compaction may reduce this to a list of 6 numbers, further 
reduced to 5 if a zero trace condition is called upon.

Component conversion of vectors and tensors can always 
be carried out via matrix calculations described in equation 
(34) and equations (35), (36). The computational cost would 
be three inner products (row times column operations) for 
a vector transformation, and 18 inner products for a tensor 
transformation, although symmetry and trace conditions can 

Figure 4 The general case of two reference systems with non-aligned unit axes 
a) e1, e2, e3, and a) x1 , x2 , x3. The components of a vector or a tensor in the 
two systems are related by a 3 × 3 transformation matrix R, whose 9 elements 
ei • xj are the cosines of the angles each axis of one system makes with all the 
axes of the other. The angles made by vector e2 of system a) with each of the 
axes in system b) are shown in the diagram.
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 (39)

 (40)

(See Figure 5). Practical calculation can now proceed using 
standard vector algebra routines, with the internal vectors 
mapped on to component arrays as given in equation (17). 
This will yield the numerical components of the magnetic 
field in the Earth-centred system, without explicit transfor-
mation matrices having been calculated or invoked.

Conclusions
Geomagnetic and gravity surveys may record vector and 
tensor fields components in any reference system preferred by 
the observer. The processing of such data, e.g., for filtering, 
gridding and geophysical model matching purposes, requires 
a consensus between the data reference systems and the 
assumed processing software reference system. By itself, 
specification of ordered Cartesian tuples (vx, vy, vz) for vector 
components and (Txx, Txy ,…Tzz) for tensor components is 
insufficient, as the underlying (x, y, z) reference system may be 
right or left handed. The correct choice is essential for deriving 
the appropriate data semantics and for correct processing.

In response to the title’s question, ‘left or right handed 
potential data?’ we state that both give legitimate ways of 
representing vectors and tensors. The onus is therefore on 
the processing software to provide the necessary flexibility of 
handling either kind of input data, and if need be, a mixture. 
We have suggested a protocol that treats vectors and tensors 
as objects, whose classes have conversion methods between 
the external representations and the internal one, and vice 
versa. The conversion methods specify how the external 

Figure 5 Local N, E, D vectors at latitude λ and longitude ϕ, and an earth-
centred reference system. Unit vectors e1 , e2 are directed from the centre to 
points of longitude ϕ = 0 and ϕ = 90 degrees on the equatorial plane, and e3 
= e1 × e2. The E vector is constant along any meridian ϕ, and so equal to its 
equatorial value, where it is found by circular interpolation between e2 (its 
value at ϕ = 0) and −e1 (its value at ϕ = 90). The equatorial value of D at longi-
tude ϕ can similarly be found, by circular interpolation between −e1 and −e2. 
Circular interpolation between this equatorial value and the polar value then 
gives the value of D for latitude λ. The third direction is found from N = E × D. 
These operations are expressed in equations (38)-(40).
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reference basis vectors are to map on to an internal set. The 
internal set is chosen to conform to a right-handed reference 
system. This ensures that internally applied standard vector 
and tensor software will give correct results.

Our formulation of the conversion methods is intuitive. 
It is stated in terms of vector operations, at a level where the 
internal structure of the basis vectors does not have to be 
revealed. The approach encourages high-level verification, an 
advantage over the usual implementation with component 
transformation matrices. However, we have shown the 
approaches are compatible. Indeed, a naive statement of a 
conversion method might optimize, in some cases towards 
component or sign flips, or even an identity operation, or 
tend towards full transformation matrices. It is hoped that 
awareness of the issues raised here will contribute towards 
improved reliability in vector and tensor geo-software to 
maintain integrity of potential data.
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